摘 要: | 在生物医学文献挖掘领域中,已有的BioBert采用预训练的方式在生物医学命名实体识别(BioNER)任务中表现出优秀的实体识别性能,却存在模型规模过大、速度过慢的缺点。针对BioBert网络模型如何高效压缩问题,该文提出了一种高效生物医学名称实体识别模型,命名为FastBioNER模型。该模型采用动态知识蒸馏方式对BioBert模型进行压缩,首先,通过动态权重函数模拟真实的学习行为,即在模型训练过程中动态调整各部分损失函数的重要程度;其次,采用动态知识蒸馏方式将训练后的BioBert作为教师模型,压缩到一个规模较小的学生模型中;最后,对提出的FastBioNER模型在已公开数据集NCBI疾病、 BC5CDR-chem和BC4CHEMD上进行了实验验证。实验结果表明:提出的FastBioNER模型在3个数据集中获得除BioBert外最高F1值分别为88.63%、 92.82%和92.60%,并分别以损失1.10%、 0.86%、 0.15%的F1值为代价,将BioBert的模型大小压缩了39.26%,同时推理时间缩短了46.17%。
|