首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进K均值的运动目标检测算法研究
引用本文:柯尊海,刘勇,徐义春,雷帮军. 基于改进K均值的运动目标检测算法研究[J]. 三峡大学学报(自然科学版), 2012, 34(6): 98-102
作者姓名:柯尊海  刘勇  徐义春  雷帮军
作者单位:三峡大学智能视觉与图像信息研究所,湖北宜昌,443002
摘    要:背景建模是运动目标检测的关键环节,提出了基于改进K均值背景建模的方法,并进行前景提取.该算法在HSV颜色空间对视频流的前N帧中的每个像素样本进行K均值聚类学习,K均值聚类的结果用来表示该像素螅背景模型;接着输入的视频流像素与背景模型比较,进行背景、可能前景和阴影的分离,并提出了一种像素相关的选择性背景更新机制;然后利用TOM(Time Out Map)方法来消除鬼影现象.实验结果表明该算法能够很好地对背景进行建模,较精确地提取出运动目标信息,对光照变化具有较强的鲁棒性.

关 键 词:K均值聚类  背景减除  运动目标检测

An Approach Based on Modified K-means for Moving Objects Detection
Ke Zunhai , Liu Yong , Xu Yichun , Lei Bangjun. An Approach Based on Modified K-means for Moving Objects Detection[J]. Journal of China Three Gorges University(Natural Sciences), 2012, 34(6): 98-102
Authors:Ke Zunhai    Liu Yong    Xu Yichun    Lei Bangjun
Affiliation:Ke Zunhai Liu Yong Xu Yichun Lei Bangjun(Institute of Intelligent Vision & Image Information,China Three Gorges Univ.,Yichang 443002,China)
Abstract:A key issue of detecting moving objects, an approach based on modified K-means to model back- ground is proposed. It learns from the starting N frames with K-means algorithm; and the results learned the background of the pixels. Following, it performs the separation of background pixels, probable foreground pixels and shadow pixels; through the comparison of the input pixels and the background model, a pixel-based selective mechanism of the background update is proposed. Finally, the ghost effects are eliminated by apply- ing the TOM method. The experimental results show that this proposed approach can well model the back- ground, and more accurately extract the moving objects, as well as more robust to the illumination changes.
Keywords:K-means cluster  background subtraction  moving objects detection
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号