首页 | 本学科首页   官方微博 | 高级检索  
     

基于动态神经网络的系统边际电价预测
引用本文:林志玲,高立群,张大鹏,张强. 基于动态神经网络的系统边际电价预测[J]. 东北大学学报(自然科学版), 2006, 27(10): 1083-1086. DOI: -
作者姓名:林志玲  高立群  张大鹏  张强
作者单位:东北大学,信息科学与工程学院,辽宁,沈阳,110004
基金项目:国家自然科学基金,辽宁省自然科学基金
摘    要:在分析系统边际电价(SMP)特点的基础上,确定了预测系统边际价格的主要依据为电力负荷、历史上对应时刻的SMP以及当天的SMP趋势.将电价看作是电力市场动态运行的结果,采用动态神经网络预测电价.由于动态神经网络结构及权值确定困难,采用二进制与实数编码相结合的联合编码,用遗传算法优化得到神经网络结构及对应权值.利用某电力市场的历史数据对该模型进行验证,结果表明该方法所建立的预测模型具有较高的预测精度.

关 键 词:电力市场  系统边际电价  动态神经网络  遗传算法  预测  仿真  
文章编号:1005-3026(2006)10-1083-04
收稿时间:2005-11-10
修稿时间:2005-11-10

Forecasting System Marginal Price of Electricity by Dynamic Neural Network
LIN Zhi-ling,GAO Li-qun,ZHANG Da-peng,ZHANG Qiang. Forecasting System Marginal Price of Electricity by Dynamic Neural Network[J]. Journal of Northeastern University(Natural Science), 2006, 27(10): 1083-1086. DOI: -
Authors:LIN Zhi-ling  GAO Li-qun  ZHANG Da-peng  ZHANG Qiang
Affiliation:(1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
Abstract:Analyzing the characteristics of SMP( system marginal price),the electrical load and the historically corresponding and current SMP trends are regarded as the three main influencing factors on forecasting the oncoming SMP value. A recurrent neural network is therefore introduced into forecasting SMP,because it is available to mapping dynamic system and SMP is regarded as a result of dynamic running on power market. To rise above the difficulty of determining NN's structure and weights,the GA optimization algorithm is used to get them by combining binary encoding with real encoding. The historically corresponding market data verified that this method is effective and the forecasting model is accurate.
Keywords:power market  system marginal price  dynamic neural network  genetic algorithm  forecasting  simulation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号