首页 | 本学科首页   官方微博 | 高级检索  
     

一种新型自适应粒子群优化粒子滤波算法及应用
引用本文:陈志敏,薄煜明,吴盘龙,宋公飞,段文勇. 一种新型自适应粒子群优化粒子滤波算法及应用[J]. 应用科学学报, 2013, 31(3): 285-293. DOI: 10.3969/j.issn.0255-8297.2013.03.011
作者姓名:陈志敏  薄煜明  吴盘龙  宋公飞  段文勇
作者单位:南京理工大学自动化学院,南京210094
基金项目:国防重点预研项目基金(No.40405020201);高等学校博士学科点专项科研基金(No.20113219110027);国家自然科学基金(No.61104196);南京理工大学紫金之星基金(No.AB41381)资助
摘    要:
基于粒子群优化的粒子滤波算法精度不高,运算复杂度大,难以在实际工程中应用. 为此,文中提出一种新型邻域自适应调整的动态粒子群优化粒子滤波算法. 该算法考虑了粒子的邻域信息,利用多样性因子、邻域扩展因子和邻域限制因子共同对粒子的邻域粒子数量进行自适应调整,控制粒子对邻域的影响,减轻局部最优现象,达到收敛速度和寻优能力的最佳平衡. 利用UNGM模型、目标跟踪模型以及故障检测模型对算法的性能进行仿真测试,结果表明:该算法与PSO-PF相比提高了精度和运算速度,具有实际工程应用价值.

关 键 词:粒子滤波  粒子群优化  目标跟踪  故障检测  
收稿时间:2011-09-14
修稿时间:2011-12-20

Novel Particle Filtering Based on Adaptive Particle Swarm Optimization and Its Application
CHEN Zhi-min,BO Yu-ming,WU Pan-long,SONG Gong-fei,DUAN Wen-yong. Novel Particle Filtering Based on Adaptive Particle Swarm Optimization and Its Application[J]. Journal of Applied Sciences, 2013, 31(3): 285-293. DOI: 10.3969/j.issn.0255-8297.2013.03.011
Authors:CHEN Zhi-min  BO Yu-ming  WU Pan-long  SONG Gong-fei  DUAN Wen-yong
Affiliation:School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:
Particle filter based on particle swarm optimization (PSO-PF) algorithm suffers from low precision and high computation complexity, therefore is difficult to be used in practical applications. This paper proposes novel dynamic particle filter algorithm based on neighborhood adaptive particle swarm optimization (DPSOPF). The method takes the neighborhood information of particles into consideration. Factors of diversity, neighborhood extension, and neighborhood limiting are jointly used to realize self-adaption of neighborhood particle numbers. Thus the influence of particles on the neighborhood is under control, and the local optimization phenomenon is alleviated. Optimal balance is achieved between convergence speed and search ability. By using the univariate nonstationary growth model (UNGM), target tracking model and failure detection model, a simulation test of the algorithm is performed. The results show that, compared to PSO-PF, the proposed algorithm improves precision and computation speed, showing its applicability to practical engineering.
Keywords:particle filter  particle swarm optimization   target tracking   fault detection  
本文献已被 CNKI 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号