首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于LSTM-WGAN的时间序列数据异常检测
作者姓名:
郑圣彬
谢加良
张东晓
作者单位:
集美大学理学院
基金项目:
国家自然科学基金资助项目(12271211、12071179);;福建省自然基金资助项目(2020J01710、2021J01861);
摘 要:
在时序数据中发现隐藏的异常行为或事件,可以保障生产安全,具有重要意义。目前的异常检测模型存在训练不稳定、容易产生梯度消失的问题,影响异常检测效果,针对该问题,提出一种LSTM-WGAN模型,WGAN负责捕获变量之间的潜在关联,进一步提升了LSTM的检测能力。同时,以Wasserstein距离代替交叉熵损失训练判别器和生成器,结合重构损失以及判别损失实现异常检测。在NAB公开数据集上的实验结果表明LSTM-WGAN相较于基准模型在准确率、召回率以及F1得分上都有较大幅度的提升。
关 键 词:
异常检测
时间序列
生成对抗网络
长短期记忆网络
Wasserstein距离
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号