首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的局部区域特征医学图像分割方法
引用本文:杨得国,杨勐,姜金娣,万红娟. 一种改进的局部区域特征医学图像分割方法[J]. 河南科技大学学报(自然科学版), 2012, 33(2): 30-33,6
作者姓名:杨得国  杨勐  姜金娣  万红娟
作者单位:西北师范大学数学与信息科学学院,甘肃兰州,730070
基金项目:国家自然科学基金项目(61165002)
摘    要:水平集分割方法中的Chan-Vese模型能够处理具有模糊边界和复杂拓扑结构的图像,但没有充分利用图像局部灰度的变化信息,致使其不能准确分割强度不均匀物体。针对这一问题对模型做了改进,引入局部灰度均值替换全局均值,以边界指示函数作权进行加权长度积分,加入使用双阱势的距离正则项来避免水平集重新初始化。试验结果表明:改进后的模型能够有效提高分割精度与效率,可以有效应用在医学图像的分割领域。

关 键 词:水平集方法  CV模型  距离正则化  图像分割

An Improved Medical Image Segmentation Model with Local Region Features
YANG De-Guo,YANG Meng,JIANG Jin-Di,WAN Hong-Juan. An Improved Medical Image Segmentation Model with Local Region Features[J]. Journal of Henan University of Science & Technology:Natural Science, 2012, 33(2): 30-33,6
Authors:YANG De-Guo  YANG Meng  JIANG Jin-Di  WAN Hong-Juan
Affiliation:(College of Mathematics & Information Science,Northwest Normal University,Lanzhou 730070,China)
Abstract:Although the conventional Chan-Vese model could process images with fuzzy boundary and complex topology,it could not segment objects with nonuniform grayscale accurately for the underutilization of the local diversity in an image.In this paper,a local weighted mean grayscale was brought in to replace the globle one. A boundary indicator was used to make the weighted length integral,and a distance regulation term with double-well potential was added to avoid the reinitialization,which makes some improvements to the CV model.Experiments show that the proposed model can effectively improve the segmentation precision and efficiency,and it is useful for medical image segmentation.
Keywords:Level set method  CV model  Distance regularization  Image segmentation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号