首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The materials genome and CALPHAD
Authors:John Ågren
Institution:1. Materials Science and Engineering, The Royal Institute of Technology, 100 44, Stockholm, Sweden
Abstract:The mapping of the human genome is an important basis for the development of new medicals and medical treatments. Consequently, it has attracted tremendous research funding over the last decade. On June 2011, the Materials Genome Initiative was announced by the US President Obama as collaboration on modeling and advanced materials databases. Unfortunately, the materials genome was given a rather vague definition in the announcement. However, the materials genome should be defined in analogy with biological genomes and one may then conclude that: at any moment, the performance of a specific material depends on its chemical composition (inherent property stored in its genome) and its environment (external interactions–processing–conditions during usage). The materials genome should thus be defined as a set of information encoded in the language of thermodynamics obtained by careful assessment of experimental data and quantum mechanical calculations from which certain conclusions about the material can be drawn. The CALPHAD databases contain the thermodynamic and kinetic properties of a materials system. Such databases allow the prediction of materials structure as well as its response to processing and usage conditions, and are major parts of integrated computational materials engineering.
Keywords:Thermodynamic and kinetic calculations  CALPHAD  Materials Genome Initiative
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号