一个二维滞后Logistic映射的分岔与分形 |
| |
引用本文: | 王立明. 一个二维滞后Logistic映射的分岔与分形[J]. 河南师范大学学报(自然科学版), 2010, 38(1) |
| |
作者姓名: | 王立明 |
| |
作者单位: | 廊坊师范学院,物理系,河北,廊坊,065000 |
| |
基金项目: | 廊坊师范学院科学研究项目 |
| |
摘 要: | 利用理论推导分析了二维滞后Logistic映射周期解的稳定性和分岔,利用相图、分岔图、Lyapunov指数和分维数等计算方法,证明了二维滞后Logistic映射依次经叉形分岔和Hopf分岔通向混沌.对二维滞后Logistic映射的吸引盆及其广义M-J集的研究表明:不同周期轨道的吸引盆形状相似,大小不同,每个吸引盆中周期和非周期区域之间的边界是分形的;广义M集的结构与a,R和有N关,广义J集的结构与a,R,N,和Cx,Cy有关,并且广义M-J集具有分形特征.
|
关 键 词: | 二维滞后Logistic映射 Hopf分岔 吸引盆 逃逸时间算法 广义M-J集 分形 |
Bifurcation and Fractal of Two-Dimensional Lagged Logistic System |
| |
Abstract: | The bifurcation of Two-dimensional Lagged Logistic System is analyzed theoretically and numerically. By using phase maps,bifurcation graphics,fractal dimension and Lyapunov exponent,the paper reveals the general features of two-dimensional lagged Logistic system transition from regularity to chaos and the fractal configuration of Periodic attraction basin and general Mandelbrot-Julia sets,the following conclusions are shown:(1)Chaotic patterns of the map may emerge out of fork bifurcation and Hopf bifurcation in turn;(2)shape is similar and size is different among different periodic attractor basins,the boundaries between periodic and non-periodic regions is fractal that indicates the moving end-result of the points in phase plane is predicted impossibly;(3)The boundaries of the general Mandelbrot-Julia sets are fractal,The structures of the general Mandelbrot sets are determined by the control parameters a,R and N ,The structures of the general Julia sets are determined by the control parameters a,R,N,Cx and Cy. |
| |
Keywords: | two-dimensional lagged Logistic system Hopf bifurcation periodic attraction basin escape time algorithm general Mandelbrot-Julia sets fractal |
本文献已被 CNKI 万方数据 等数据库收录! |
|