首页 | 本学科首页   官方微博 | 高级检索  
     

特征值问题的组合杂交有限元方法
引用本文:付卫,王皓,张世全. 特征值问题的组合杂交有限元方法[J]. 四川大学学报(自然科学版), 2017, 54(4): 708-712
作者姓名:付卫  王皓  张世全
作者单位:四川大学数学学院,四川大学数学学院,四川大学数学学院
摘    要:
本文将组合杂交有限元的思想应用于特征值问题,构造了求解最小特征值问题的一种新型有限元法.首先,本文推导了最优误差估计,然后用数值算例验证了理论结果.理论分析和数值算例表明,当组合系数α∈0(,1)时,本文的方法在最低阶时均能达到二阶精度,并且还能从数值算例中发现对于不同的α,使得特征值问题最小值能从左右两个方向趋向于真实值,从而可以在粗网格上选取最优的α来得到更准确的结果.

关 键 词:组合杂交方法,特征值问题, 混合有限元
收稿时间:2017-03-18
修稿时间:2017-04-15

Combined Hybrid Finite Element Methods for Eigenvalue Problems
FU Wei,WANG Hao and ZHANG Shi-Quan. Combined Hybrid Finite Element Methods for Eigenvalue Problems[J]. Journal of Sichuan University (Natural Science Edition), 2017, 54(4): 708-712
Authors:FU Wei  WANG Hao  ZHANG Shi-Quan
Affiliation:School of Mathematics, Sichuan University,School of Mathematics, Sichuan University,School of Mathematics, Sichuan University
Abstract:
In this paper, we apply combined hybrid finite element methods to the eigenvalue problems, and construct a new finite element method for solving the smallest eigenvalue. First, we derive the optimal error estimation, and then we use numerical examples to verify our theoretical results. Both theoretical analyses and numerical results show that for all the combined coefficient , our methods can obtain second order accuracy for solving the smallest eigenvalue when the lowest order finite element spaces are used. From the numerical performance, we can also observe that the numerical solution can approach to the exact eigenvalue from both directions for different , so we can choose the optimal such that better approximations can be obtained on the coarse grid.
Keywords:Combined hybrid methods   Eigenvalue problems   Mixed finite element methods
本文献已被 CNKI 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号