首页 | 本学科首页   官方微博 | 高级检索  
     

关于不定方程x2+4n=y11的整数解
作者姓名:蔡小群
作者单位:华南师范大学 数学科学学院,广州 510631
摘    要:
应用代数数论以及同余法等初等方法讨论不定方程x~2+4~n=y~(11)的整数解情况,证明了不定方程x~2+4~n=y~(11)在x为奇数,n≥1时无整数解;不定方程x~2+4~n=y~(11)在n∈{1,8,9,10}时均无整数解;不定方程x~2+4~n=y~(11)有整数解的充要条件是n≡0(mod 11)或n≡5(mod 11),且当n≡0(mod 11)时,其整数解为(x,y)=(0,4~m);当n≡5(mod 11)时,其整数解为(x,y)=(±2~(11m+5),22m+1),这里的m为非负整数,验证了k=11时猜想1成立。

关 键 词:不定方程; 整数解; 代数数论
本文献已被 CNKI 等数据库收录!
点击此处可从《重庆工商大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆工商大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号