摘 要: | 应用代数数论以及同余法等初等方法讨论不定方程x~2+4~n=y~(11)的整数解情况,证明了不定方程x~2+4~n=y~(11)在x为奇数,n≥1时无整数解;不定方程x~2+4~n=y~(11)在n∈{1,8,9,10}时均无整数解;不定方程x~2+4~n=y~(11)有整数解的充要条件是n≡0(mod 11)或n≡5(mod 11),且当n≡0(mod 11)时,其整数解为(x,y)=(0,4~m);当n≡5(mod 11)时,其整数解为(x,y)=(±2~(11m+5),22m+1),这里的m为非负整数,验证了k=11时猜想1成立。
|