基于粒子群改进的自适应核密度估计算法的江苏省地面气温分析 |
| |
引用本文: | 叶小岭,熊 雄,陈 昕,阚亚进,王佐鹏. 基于粒子群改进的自适应核密度估计算法的江苏省地面气温分析[J]. 科学技术与工程, 2020, 20(36): 14809-14816 |
| |
作者姓名: | 叶小岭,熊 雄,陈 昕,阚亚进,王佐鹏 |
| |
作者单位: | 南京信息工程大学自动化学院,南京210044;南京信息工程大学气象灾害预报预警与评估协同创新中心,南京210044;南京信息工程大学自动化学院,南京210044 |
| |
基金项目: | 国家自然科学基金项目(41675156) 江苏省高校自然科学研究面上项目(19KJB170004) 中国铁路上海局公司重大科研项目(2019041) 南京信息工程大学人才启动经费项目(2243141701053) |
| |
摘 要: | 考虑到当前气温分析方法对于季度、月度及日夜时间尺度下的数据分析不够充分的问题,提出一种基于粒子群算法改进的自适应核密度估计算法(PA-KDE),利用1961~2008年江苏省12个站点的定时气温资料研究该方法在季度、月度及日夜时间尺度下的灵敏度。按区域与季节对试验进行分析的结果表明:PA-KDE算法在季度、月度、日夜时间尺度下具有更高的灵敏度;同时可以用来更全面的分析气温的时空变化特征以及不同影响因子的效果。可见在讨论气温时空变化以及影响特征时要关注更多时间尺度、区域、季节下的影响。
|
关 键 词: | 粒子群算法 自适应算法 核密度估计 地面气温 时间尺度 |
收稿时间: | 2019-10-19 |
修稿时间: | 2020-09-24 |
Analysis of Surface Air Temperature Observations in Jiangsu Province Based on Adaptive Kernel Density Estimation Algorithm Improved by Particle Swarm Optimization |
| |
Affiliation: | School of Automation, Nanjing University of Information Science & Technology |
| |
Abstract: | The problem had been considered that the current temperature analysis methods were insufficiently for data analysis at quarterly, monthly, daily and nightly time scales, thus an adaptive kernel density estimation algorithm improved by particle swarm optimization was proposed. The timed temperature of 12 stations in Jiangsu Province from 1961 to 2008 were selected as observations to verify the sensitivity of the method at the quarterly, monthly, daily and nightly time scales. The result analyzed by region and season shows that: the improved algorithm has higher sensitivity at these time scales, and the characteristics of spatiotemporal variation and the effects of different influencing factors can be more comprehensively analyzed simultaneously. Thus the results suggest that attention should be paid to the effects at different time scales, regions and seasons when the characteristics of spatiotemporal variation and different influencing factors are discussed. |
| |
Keywords: | particle swarm optimization adaptive algorithm kernel density estimation surface air temperature time scales |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《科学技术与工程》浏览原始摘要信息 |
|
点击此处可从《科学技术与工程》下载全文 |
|