首页 | 本学科首页   官方微博 | 高级检索  
     

结合遗传算法和阻尼牛顿算法的小波神经网络入侵检测
引用本文:郭德超,蔡利栋. 结合遗传算法和阻尼牛顿算法的小波神经网络入侵检测[J]. 暨南大学学报(自然科学与医学版), 2010, 31(1)
作者姓名:郭德超  蔡利栋
作者单位:1. 暨南大学计算机科学系,广东,广州,510632;广州中医药大学经管学院,广东,广州,510006
2. 暨南大学计算机科学系,广东,广州,510632
基金项目:国家自然科学基金项目(60275028)
摘    要:
小波神经网络结合了小波变换和神经网络的优点,具有很强的非线性映射能力和自适应、自学习能力,特别适合于入侵检测系统.但小波神经网络的也有易于陷入局部极小值、收敛速度慢的弱点.对此,本文引入遗传算法来优化产生小波神经网络的初始权值与阈值等,确定一个较好的搜索空间,从而克服小波神经网络易于陷入局部极小值的缺点;同时引入了阻尼牛顿算法,在遗传算法所确定了的搜索空间中对网络进行快速训练,解决传统小波神经网络收敛速度慢的问题,两者构成阻尼牛顿-遗传-小波神经网络.仿真结果表明该方法可行,使神经网络的逼近能力和泛化能力得到了显著提高.

关 键 词:入侵检测  小波神经网络  遗传算法  网络安全  阻尼牛顿算法  

Intrusion detection using wavelet neural networks with GA and LM
GUO De-chao,CAI Li-dong. Intrusion detection using wavelet neural networks with GA and LM[J]. Journal of Jinan University(Natural Science & Medicine Edition), 2010, 31(1)
Authors:GUO De-chao  CAI Li-dong
Affiliation:1.Department of Computer Science;Jinan University;Guangzhou 510632;China;2.School of Economy and Management;Guangzhou University of Chinese Medicine;Guangzhou 510006;China
Abstract:
The wavelet neural network(WNN) combines both advantages of the wavelet transform and the neural network,hence being of strong nonlinear mapping,adaptive and self-learning capabilities,and fairly suitable to the intrusion detection.However,it has some weakness in computing,such as easy convergence to local minimums and a slow convergence rate.To improve WNN's performance first the genetic algorithm(GA) is introduced to optimize WNN's initial weights and thresholds etc.for getting a better solution space to ...
Keywords:intrusion detection  network security  wavelet neural networks  genetic algorithm  Levenberg-Marquardt algorithm  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号