首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于优化小波神经网络的语音识别
引用本文:陈立伟,宋宪晨,章东升,杨洪利. 一种基于优化小波神经网络的语音识别[J]. 应用科技, 2008, 35(2): 17-20
作者姓名:陈立伟  宋宪晨  章东升  杨洪利
作者单位:哈尔滨工程大学,信息与通信工程学院,黑龙江,哈尔滨,150001
摘    要:在以往的BP小波神经网络中,最常用的学习算法是BP算法,BP算法实质上就是梯度下降法,是一种局部搜索算法,梯度下降法使得网络极易陷入局部最小值,从而使得网络训练结果不尽人意,搜索成功概率低.取代传统的梯度下降法,利用粒子群算法对小波神经网络中的参数进行优化.然后利用基于粒子群优化(PSO)的小波神经网络进行抗噪声语音识别实验,仿真结果表明,与BP网络相比,PSO算法在迭代次数、函数逼近误差、网络性能方面均优于BP网络,系统的识别率也得到较大的提高.

关 键 词:粒子群优化  小波神经网络  语音识别  抗噪声  粒子群优化  小波神经网络  语音识别  wavelet neural network  recognition  识别率  系统  网络性能  逼近误差  函数  迭代次数  仿真结果  实验  抗噪声  参数  粒子群算法  利用  成功概率  搜索算法  训练结果
文章编号:1009-671X(2008)02-0017-04
收稿时间:2007-03-07
修稿时间:2007-03-07

Speech recognition using an optimized wavelet neural network
CHEN Li-wei,SONG Xian-chen,ZHANG Dong-sheng,YANG Hong-li. Speech recognition using an optimized wavelet neural network[J]. Applied Science and Technology, 2008, 35(2): 17-20
Authors:CHEN Li-wei  SONG Xian-chen  ZHANG Dong-sheng  YANG Hong-li
Abstract:The traditional BP wavelet neural networks usually adopt BP learning algorithm. BP algorithm is a gradient descent algorithm in essence, i.e. , a local search algorithm. The gradient descent algorithm is easy to fall into a local minimum, so the result of network training is unsatisfactory. Instead of the gradient descent algorithms, we use particle swarm optimization algorithm to train the parameters of the wavelet neural network. Then we use the PSO-WNN in speech recognition in noisy environment. Compared with the BP network, the simulation results show that the iterative number, function approximation errors and the network performance are highly improved than BP network. The recognition rate are also raised.
Keywords:particle swarm optimization   wavelet neural network   speech recognition   speech recognition in noisy environment
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号