首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的BP神经网络在遥感图像分类中的应用
引用本文:杜慧茜. 一种改进的BP神经网络在遥感图像分类中的应用[J]. 北京理工大学学报, 1998, 18(4): 485-488
作者姓名:杜慧茜
作者单位:北京理工大学电子工程系
摘    要:
反向传播神经网络能解决传统分类方法的不足,现已逐渐用于遥感图像的分类中,研究用种新的改进BP算法进行遥感图像分类。

关 键 词:遥感图像 动态学习速率 BP神经网络 分类

Classification of Remote Sensing Images Using BPNeural Network with Dynamic Learning Rate
Du Huiqian,Mei Wenbo,Li Desheng. Classification of Remote Sensing Images Using BPNeural Network with Dynamic Learning Rate[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 1998, 18(4): 485-488
Authors:Du Huiqian  Mei Wenbo  Li Desheng
Abstract:
Aim Backpropagation neural network classifier can solve the problems ex- isting in the traditional classifers classifers and has been gradually used in the classification of re- mote sensing image. A new improved BP method of classifying the remote sensing image is to be presented Methods Conjugate gradient with line search (CGL) was introduced to optimize the learning rate.Results The training speed is much higher than other methods to save time from 5 to 110s.Conclusion The method avoids the burden of the large storage and the divergence of the error function so that it is that it is applicable to remote sensing image classification.
Keywords:remote sensing image classification  backpropagation neural network: dy- namic learning rate  
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号