首页 | 本学科首页   官方微博 | 高级检索  
     

组合投资问题中的信息结构
引用本文:张荣,刘星. 组合投资问题中的信息结构[J]. 重庆大学学报(自然科学版), 2002, 25(6): 127-131
作者姓名:张荣  刘星
作者单位:重庆大学,工商管理学院,重庆,400044;重庆大学,工商管理学院,重庆,400044
基金项目:国家自然科学基金 (79970 0 73 ),中国博士后科学基金资助
摘    要:介绍不同信息结构对组合投资的影响并给出各种模型的具体算例。首先介绍常见的均值-方差模型,虽然它对资产收益率沿时间的运动信息没有作更多结构上的假设,但当资产的选择在较多果,可能会涉及到高阶矩阵的求逆等问题;其次分析了随机最优控制模型,它经常要利用到HJB方程,可能涉及偏微分方程及矩阵Riccati方程的求解。最后探讨的是微分对策模型,它在不同信息结构下均衡解的存在性,唯一性以及具体求解都可能卷入十分复杂的分析。

关 键 词:组合投资  信息结构  微分对策
文章编号:1000-582X(2002)06-0127-05
修稿时间:2001-11-27

Information Structures in Portfolio Selection
ZHANG Rong,LIU Xing. Information Structures in Portfolio Selection[J]. Journal of Chongqing University(Natural Science Edition), 2002, 25(6): 127-131
Authors:ZHANG Rong  LIU Xing
Abstract:This paper gives a brief presentation of the influence of different information structures on portfolio selection and some simple examples to demonstrate their basic algorithms. The first is the familiar mean_variance model. The model does not need more hypotheses on the motion of the asset price along the full continuous time axis,but sometimes many unanticipated computation problems may be involved because of the difficulty in computing the inverse of some matrices with high dimension. The second is the stochastic optimal control model. It is to solve a stochastic optimal control problem,which is often related to Hamilton_Jacobi_Bellman eqution.It results in solving partial differential equations of Riccati matrix differential equations. Their closed_form solutions are usually very hard to obtain. The last is the differential game model. The existence,uniqueness,and the computation for its equilibrium solution are all very difficult mathematical problems.
Keywords:portfolio selection  information structures  differential game
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号