首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波域维纳滤波器的信号稀疏表示
引用本文:赵志鹏,岑翼刚,陈晓方. 基于小波域维纳滤波器的信号稀疏表示[J]. 应用科学学报, 2012, 30(6): 595-600. DOI: 10.3969/j.issn.0255-8297.2012.06.006
作者姓名:赵志鹏  岑翼刚  陈晓方
作者单位:1. 北京交通大学信息科学研究所,北京1000442. 现代信息科学与网络技术北京市重点实验室,北京1000443. 中南大学信息科学与工程学院,长沙410083
基金项目:国家自然科学基金,北京市自然科学基金预探索项目基金,中央高校基本科研业务费专项资金,教育部博士点新教师基金,北京交通大学红果园D类人才支持计划资助
摘    要:
经典小波分解对信号稀疏化效果不佳,为此设计了基于小波域经验维纳滤波器的稀疏表示算法. 该算法可自适应地衰减每个小波系数,增大系数的稀疏度及可压缩性,从而提高压缩感知算法对信号的恢复质量. 仿真结果表明,与传统的基于小波变换的信号稀疏表示及恢复算法相比,该算法较大地提升了对信号及图像的恢复质量.

关 键 词:稀疏表示  维纳滤波器  小波变换  正交匹配追踪算法  
收稿时间:2011-05-06
修稿时间:2011-11-25

Sparse Representation of Signals Based on Wavelet Domain Wiener Filtering
ZHAO Zhi-peng , CEN Yi-gang , CHEN Xiao-fang. Sparse Representation of Signals Based on Wavelet Domain Wiener Filtering[J]. Journal of Applied Sciences, 2012, 30(6): 595-600. DOI: 10.3969/j.issn.0255-8297.2012.06.006
Authors:ZHAO Zhi-peng    CEN Yi-gang    CHEN Xiao-fang
Affiliation:1. Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China;2. Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing 100044, China;3. School of Information Science and Engineering, Central South University, Changsha 410083, China
Abstract:
A wavelet-based Wiener filter is proposed for signal sparse representation since the classical wavelet transform can not posses good sparse results for real signals. The proposed method can adaptively decrease the magnitude of each wavelet coefficient so that sparsity and compressibility of the wavelet coefficients is improved. This results in improvement of recovered signal quality of the compressed sensing algorithm. Simulation results show that, compared to the original sparse representation based on wavelet transform, the proposed algorithm can significantly improve quality of recovered signals for both signals and images.
Keywords:sparse representation  Wiener filter  wavelet transform  orthogonal matching pursuit (OMP)algorithm  
本文献已被 万方数据 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号