一种基于聚类和关联规则修正的入侵检测技术 |
| |
引用本文: | 黄斌,;史亮,;陈德礼. 一种基于聚类和关联规则修正的入侵检测技术[J]. 莆田高等专科学校学报, 2009, 0(2): 68-70 |
| |
作者姓名: | 黄斌, 史亮, 陈德礼 |
| |
作者单位: | [1]莆田学院电子信息工程系,福建莆田351100; [2]厦门大学软件学院,福建厦门361005 |
| |
基金项目: | 福建省自然科学基金项目(2008F50602);福建省自然科学基金-青年人才项目(2008F3101) |
| |
摘 要: | 针对目前基于K-Means算法的入侵检测技术所存在的符号类型数据处理能力欠缺、误报率较高的问题,提出了一种基于聚类和关联规则修正的入侵检测技术。将关联规则挖掘技术引入到聚类分析机制中,利用针对符号型属性的关联规则挖掘结果对聚类结果进行修正,从而有效降低由于在入侵检测单纯使用聚类分析所导致的误报。详细阐述了改进的具体实现方案,并通过实验验证了该技术的可行性。
|
关 键 词: | 入侵检测 聚类算法 关联规则 |
An Intrusion Detection Method Based on Clustering and Association Correction |
| |
Affiliation: | HUANG Bin, SHI Liang, CHEN De-li (1. Electronic & Information Engineering Department, Putian University, Putian Fujian 351100, China; 2. Software School, Xiamen University, Xiamen Fujian 361005, China ) |
| |
Abstract: | This paper analyses the existing problems of the current intrusion detection techniques base on K-Means Algorithm: failing to analyse the attribute composed by character, higher false-detection rate, ere, and brings forward some improvement: We use Association Rule into clustering analysis to reduce the false-detection rate in our algorithm. In this paper, we introduce the improved method concretely, and shows the feasibility and effect through an experiment. |
| |
Keywords: | intrusion detection clustering algorithm Association Rule |
本文献已被 维普 等数据库收录! |
|