首页 | 本学科首页   官方微博 | 高级检索  
     


Forecast accuracy after pretesting with an application to the stock market
Authors:Dmitry Danilov  Jan R. Magnus
Abstract:In econometrics, as a rule, the same data set is used to select the model and, conditional on the selected model, to forecast. However, one typically reports the properties of the (conditional) forecast, ignoring the fact that its properties are affected by the model selection (pretesting). This is wrong, and in this paper we show that the error can be substantial. We obtain explicit expressions for this error. To illustrate the theory we consider a regression approach to stock market forecasting, and show that the standard predictions ignoring pretesting are much less robust than naive econometrics might suggest. We also propose a forecast procedure based on the ‘neutral Laplace estimator’, which leads to an improvement over standard model selection procedures. Copyright © 2004 John Wiley & Sons, Ltd.
Keywords:pretest  forecasting  model selection  stock returns
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号