摘 要: | 对图G的一个正常的k边染色法f,若 e∈E(G),e = uv,{f(uw) | uw∈E(G)}≠{f(vw) | vw∈E(G)},则称f为G 的一个k 邻强边染色法,k的最小值称为G 的邻强边色数.V(Fm Sn) = {w}∪{ui | i =1,2,…,m}∪{vij | i =1,2,…,m;j =1,2,…,n},E(Fm Sn) = {wui | i =1,2,…,m}∪{uivij | i =1,2,…,m;j =1,2,…,n}∪{uiui+1 | i =1,2,…,m-1}. 本文得到了Fm Sn 的边色数和邻强边色数.
|