首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的输变电设备紫外放电光斑分割方法
作者姓名:裴少通  杨家骏  马子儒  刘云鹏
作者单位:华北电力大学河北省分布式储能与微网重点实验室;华北电力大学河北省输变电设备安全防御重点实验室
基金项目:中央高校基本科研业务费专项资金(2020MS093)
摘    要:随着紫外成像技术的发展,高压电力设备对于紫外成像图谱的量化分析提出了更高的要求。紫外图谱的量化分析需要用到除紫外成像仪所输出“光子数”额外的紫外光斑图像信息,所以需要将紫外放电光斑从可见光的背景中分割出来。然而,传统紫外图谱光斑分割方法仍存在复杂背景及小光斑分离困难、特征选取复杂、分割精准度低等问题。基于上述问题,提出了一种基于深度学习的紫外图谱光斑分割提取的方法。首先,采用紫外成像仪拍摄电力设备放电缺陷紫外图谱;其次,分别构建FCN-32s、FCN-16s、FCN-8s 3种全卷积网络(fully convolutional networks, FCN)子模型架构,并利用随机梯度下降法进行模型训练;最后,实现输变电设备放电缺陷紫外图谱主光斑的自主分割提取。经过对FCN 3种子模型架构的训练、测试和对比分析,结果表明:FCN-16s模型为紫外光斑分割提取的最佳模型,测试准确率可达99.34%。结果表明基于深度学习的紫外图谱光斑分割方法准确高效,为紫外光斑的量化提取及电力设备放电缺陷的紫外诊断提供了参考。

关 键 词:紫外成像  深度学习  图像分割  全卷积神经网络
收稿时间:2021-10-14
修稿时间:2022-11-18
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号