首页 | 本学科首页   官方微博 | 高级检索  
     

二维因果序列的逆Z变换
引用本文:张胜付 赵惠昌. 二维因果序列的逆Z变换[J]. 南京理工大学学报(自然科学版), 1996, 20(2): 170-173
作者姓名:张胜付 赵惠昌
作者单位:南京理工大学电子工程与光电技术学院,南京210094
摘    要:该文讨论了计算二维单边逆Z变换的一般方法,将二维序列分为几种情形:可分序列.有限长序列、其它序列,给出的计算方法则有一维法、偏导数法、二维连卷积法、二维围线积分法、二维逆卷积法等。二维逆Z变换远比一维情形复杂,表现在二维收敛域、二元因式分解、庞大的计算量等方面.该文的方法适用于求取较为简单的二维逆Z变换问题,尤以偏导数法和逆卷积法史具实际意义。

关 键 词:序列 Z变换 二维问题 逆卷积 围线积分
修稿时间:1995-09-20

Inverse-Z Transform of Causal 2-D Sequences
Zhang ShengFu;Zhao HuiChang. Inverse-Z Transform of Causal 2-D Sequences[J]. Journal of Nanjing University of Science and Technology(Nature Science), 1996, 20(2): 170-173
Authors:Zhang ShengFu  Zhao HuiChang
Abstract:This paper discusses usual methods to 2-D singleside inverse-Z transform.The 2-D sequences are derided into several kinds; seperate, length finite, and others; and the given methods are 1-D method, partial-derivative method, 2-D combined convolution, 2-D contour integral and 2-D deconvolution method. Because inverse-Z transform in the case of 2-D is much more complicated than that in 1-D, which appears in 2-D convergent region or two variates factorization or teriable corn putations, etc. So the methods given in this paper can be used to get some simple inverse-Z transform. The partial-derivative method and deconvolution method are of practical use.
Keywords:sequences, Z-transform, 2-D problem, deconvolution   contour integrals
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号