首页 | 本学科首页   官方微博 | 高级检索  
     

连续搅拌反应釜的自适应模糊辨识与预测控制
引用本文:许娣,高钰凯,佃松宜. 连续搅拌反应釜的自适应模糊辨识与预测控制[J]. 科学技术与工程, 2020, 20(20): 8268-8275
作者姓名:许娣  高钰凯  佃松宜
作者单位:四川大学电气工程学院,成都610065;四川大学电气工程学院,成都610065;四川大学电气工程学院,成都610065
摘    要:化工领域为保证生产安全,对温度、压强、浓度等工艺指标有严格的要求。连续搅拌反应釜属于典型的化工设备,存在较强的非线性和时滞性,传统的建模与控制方法无法满足其精度要求。针对连续搅拌反应釜系统提出一种自适应模糊辨识与预测控制的方法。首先根据模糊划分C均值聚类算法得到模糊隶属度和初始聚类中心,在此基础上采用分层遗传算法进一步优化连续搅拌反应釜T-S模糊模型的参数。其次,采用自适应机制遗忘因子递推最小二乘法来估计T-S模糊模型的后件参数。最后,基于得到的T-S模糊模型,对连续搅拌反应釜进行自适应模糊广义预测控制,仿真结果验证了该算法的有效性。

关 键 词:连续搅拌反应釜(CSTR)  模糊辨识  T-S模糊模型  自适应模糊广义预测控制
收稿时间:2020-01-15
修稿时间:2020-03-29

Adaptive Fuzzy Identification and Predictive control of Continuous Stirred Tank Reactor
Xu Di,Gao Yu Kai. Adaptive Fuzzy Identification and Predictive control of Continuous Stirred Tank Reactor[J]. Science Technology and Engineering, 2020, 20(20): 8268-8275
Authors:Xu Di  Gao Yu Kai
Affiliation:School of Electrical Engineering, Sichuan University
Abstract:In order to ensure the safety of production, the chemical industry has strict requirements on process indexes such as temperature, pressure and concentration. The CSTR is a typical chemical equipment, which has strong nonlinearity and time delay. The traditional modeling and control methods can not meet the accuracy requirements. In this paper, an adaptive fuzzy identification and predictive control method for CSTR is proposed. Firstly, the fuzzy membership degree and initial clustering center are calculated based on the fuzzy partition c-means clustering algorithm. Based on this, the antecedent parameters of T-S fuzzy model of CSTR are further optimized by combining hierarchical genetic algorithm. Secondly, the forgetting factor recursive least square method with self-adaptive mechanism is used to estimate the post parameters of T-S fuzzy model. Finally, based on the T-S fuzzy model, the adaptive fuzzy generalized predictive control is applied to the CSTR, and the simulation results verify the effectiveness of the algorithm.
Keywords:cstr  fuzzy identification  t-s fuzzy model  adaptive fuzzy generalized predictive control
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号