首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于改进的稀疏降噪自编码网络的三维模型识别方法
作者姓名:
刘钢
王慧
王新颖
作者单位:
长春工业大学 计算机科学与工程学院, 长春 130012
摘 要:
针对海量数据挖掘中三维模型特征识别准确率较低的问题, 提出一种改进的稀疏降噪自编码神经网络模型. 先基于改进的稀疏降噪自编码方法构建深度神经网络模型, 再利用无监督预训练方法及受限的拟牛顿计算方法对自编码神经网络进行训练, 最后采用softmax回归和得到的特征训练最终的分类器. 结果表明: 该方法对有噪声的三维模型特征信息具有较好的鲁棒性; 与栈式自编码神经网络和自学习神经网络相比, 该方法识别率较高.
关 键 词:
稀疏降噪自编码
三维模型识别
softmax分类器
收稿时间:
2017-05-11
本文献已被
CNKI
等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号