首页 | 本学科首页   官方微博 | 高级检索  
     

水泥窑协同处置生活垃圾的燃烧特性分析优化
引用本文:吴敬兵,唐汉卿,胥军. 水泥窑协同处置生活垃圾的燃烧特性分析优化[J]. 系统仿真学报, 2020, 32(1): 35-43. DOI: 10.16182/j.issn1004731x.joss.19-0235
作者姓名:吴敬兵  唐汉卿  胥军
作者单位:武汉理工大学 机电工程学院,湖北 武汉 430070
摘    要:针对传统方法难以分析掺烧生活垃圾后的水泥窑复杂燃烧特性的问题,引入数据挖掘技术,以国内某水泥厂为对象,采集相关参数数据,使用稳定性选择算法分析各参数对煤耗与NOx排量的影响系数,通过随机森林算法建立煤耗与NOx排量的数学模型,结合K-means聚类算法得出关键优化参数及其最优值.结果 表明,该方法能够建立精确的煤耗与N...

关 键 词:水泥窑  生活垃圾  燃烧性能  数据挖掘  稳定性选择  随机森林  k-means
收稿时间:2019-06-03

Analysis and Optimization of Combustion Characteristics of Cement Kiln Cooperatively Disposing Domestic Refuse
Wu Jingbing,Tang Hanqing,Xu Jun. Analysis and Optimization of Combustion Characteristics of Cement Kiln Cooperatively Disposing Domestic Refuse[J]. Journal of System Simulation, 2020, 32(1): 35-43. DOI: 10.16182/j.issn1004731x.joss.19-0235
Authors:Wu Jingbing  Tang Hanqing  Xu Jun
Affiliation:School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
Abstract:Because the traditional methods can hardly analyze the complex combustion characteristics of cement kiln mixed with domestic refuse, a data mining technology is introduced. A domestic cement plant is selected as the object, and its operating data and relevant parameters are collected. The influence coefficient of each parameter on coal consumption and NOx emission is analyzed by using Stability Selection algorithm. The mathematical model of coal consumption and NOx emission is established with Random Forest algorithm, and the key optimization parameters and their optimal values are obtained by K-means clustering algorithm. The result shows that this method can establish accurate models of coal consumption and NOx emission, and can find out the key optimization parameters and their optimal values for energy saving and emission reduction. By adjusting the key optimization parameters, coal consumption and NOx emission can be greatly reduced. This method can guide cement plant to optimize kiln combustion performance.
Keywords:cement kiln  domestic refuse  combustion performance  data mining  stability selection  random forest  k-means
本文献已被 维普 等数据库收录!
点击此处可从《系统仿真学报》浏览原始摘要信息
点击此处可从《系统仿真学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号