首页 | 本学科首页   官方微博 | 高级检索  
     

一种动态改变惯性权的自适应粒子群算法
引用本文:张选平,杜玉平,秦国强,覃征. 一种动态改变惯性权的自适应粒子群算法[J]. 西安交通大学学报, 2005, 39(10): 1039-1042
作者姓名:张选平  杜玉平  秦国强  覃征
作者单位:西安交通大学计算机科学与技术系,710049,西安
基金项目:国防科工委“十五”预研基金资助项目(102010203)
摘    要:
针对惯性权值线性递减粒子群算法(LDW)不能适应复杂的非线性优化搜索过程的问题,提出了一种动态改变惯性权的自适应粒子群算法(DCW).在该算法中引入了参数粒子群进化速度因子和聚集度因子,并根据这2个参数对粒子群算法搜索能力的影响,将惯性因子表示为粒子群进化速度因子和聚集度因子的函数.在每次迭代时算法可根据当前粒子群进化速度因子和聚集度因子动态地改变惯性权值,从而使算法具有动态自适应性.对几种典型函数的测试结果表明,DCW算法的收敛速度明显优于LDW算法,收敛精度也有所提高.

关 键 词:粒子群  惯性权  自适应
文章编号:0253-987X(2005)10-1039-04
收稿时间:2004-11-29
修稿时间:2004-11-29

Adaptive Particle Swarm Algorithm with Dynamically Changing Inertia Weight
Zhang Xuanping,Du Yuping,Qin Guoqiang,Qin Zheng. Adaptive Particle Swarm Algorithm with Dynamically Changing Inertia Weight[J]. Journal of Xi'an Jiaotong University, 2005, 39(10): 1039-1042
Authors:Zhang Xuanping  Du Yuping  Qin Guoqiang  Qin Zheng
Abstract:
A new particle swarm algorithm with dynamically changing inertia weight(DCW) is presented to solve the problem that the linearly decreasing weight(LDW) of the particle swarm algorithm cannot adapt to the complex and nonlinear optimization process.The evolution speed factor and aggregation degree factor of the swarm are introduced in this new algorithm and the weight is formulated as a function of these two factors according to their impact on the search performance of the swarm.In each iteration process,the weight is changed dynamically based on the current evolution speed factor and aggregation degree factor,which provides the algorithm with effective dynamic adaptability.The algorithms of LDW-PSO and DCW-PSO are tested with three well-known benchmark functions.The experiments show that the convergence speed of DCW-PSO is significantly superior to DCW-PSO,and the convergence accuracy is also increased.
Keywords:particle swarm  inertia weight  adaptability
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号