首页 | 本学科首页   官方微博 | 高级检索  
     

粗糙集连续属性离散化的SOM网络方法
引用本文:李翠玲,张浩,赵荣泳,陆剑峰,蔡英. 粗糙集连续属性离散化的SOM网络方法[J]. 广西师范大学学报(自然科学版), 2006, 24(4): 46-49
作者姓名:李翠玲  张浩  赵荣泳  陆剑峰  蔡英
作者单位:上海海事大学,电气系,上海,200135;上海电力学院,信息与控制工程系,上海,200090;同济大学,CIMS中心,上海,200092;无锡机床有限公司,江苏,无锡,214061
基金项目:Sino-German Goverment Cooperatiorl Project (2002DFG00027)
摘    要:基于Rough Set理论中的不可分辨性原理,给出两个新的定义属性的最大区分值(Maximum Dis-cernibility Value,MDV)和属性冗余度(Attribute Redundancy Rate,ARR)。在数据预处理阶段,属性的MDV数值用于确定关于自组织映射网络SOM输出单元数量的启发式搜索策略;属性冗余度则用于衡量属性约简结果的信息冗余程度,并以此作为优化SOM网络输出层结构的依据。不依赖于领域经验知识,建立了MDV、SOM、ARR的组合算法模型,实现了Rough Set理论中连续属性的自动离散化计算,并明显提高了属性约简的速度。最后,通过项目实例对全过程进行有效验证。

关 键 词:SOM  rough set  属性可分辨性  聚类  机器学习
文章编号:1001-6600(2006)04-0046-04
收稿时间:2006-05-31
修稿时间:2006-05-31

Discretization Algorithm for Continuous Attribute in Rough Set Theory Based on Heuristic SOM
LI Cui-ling,ZHANG Hao,ZHAO Rong-yong,LU Jian-feng,CAI Ying. Discretization Algorithm for Continuous Attribute in Rough Set Theory Based on Heuristic SOM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2006, 24(4): 46-49
Authors:LI Cui-ling  ZHANG Hao  ZHAO Rong-yong  LU Jian-feng  CAI Ying
Affiliation:1. Department of Electrical Automation,Shanghai Maritime University,Shanghai 200135 ,China ;2. Department of Information and Controlling Engineering,Shanghai University of Electric Power, Shanghai 200090, China ;3. CIMS Center, Tongji University,Shanghai 200092, China ; 4. Wuxi Machine Tools Company Ltd,Wuxi 214061 ,China
Abstract:In this paper,based on the indiscernibility discipline in Rough Set theory,two new measurement definitions are defined:attribute Maximum Discernibility Value(MDV) and Attribute Redundancy Rate(ARR).MDV is introduced to decide the heuristic strategy for the Self-Organizing feature Map (SOM) neural network in the data preprocessing stage.And the attribute redundancy rate is for the attribute reduction as a effective feedback to the SOM clustering.Independent of domain experience,the combination of MDV,SOM,Skowron reduction,and the ARR can adjust the clustering number for every continuous attirbute automatically.Therefore,in theory,the computational speed is heightened greatly for the rough set attribute reduction.And in the end,a virtual project application is demostrated for the whole process effectively.
Keywords:SOM  rough set  attribute discretization  cluster  machine learning
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号