首页 | 本学科首页   官方微博 | 高级检索  
     


The signal transduction pathways and molecules for ES cells self-renewal
Authors:Na Liu  Min Lu
Affiliation:LIU Na & LU Min Institute of Hematology, Chinese Academy of Medical Sciences & Pe- king Union Medical College, Tianjin 300020, China
Abstract:Embryonic stem cells (ES cells) are derived from the inner cell mass (ICM) of blastocysts. ES cells can divide and produce identical copies of them over and over again (self-renewal) in vitro for a long time, and retain the capability of differentiating into all cell types when induced by appropriate signals. Their capability of multilineage dif- ferentiation might be exploited for cell-based therapies. Therefore, ES cells have a broad prospect in many clinical applications. To achieve success in the clinical applications, we have to understand how ES cells propagate and differen- tiate into specific cell types. The cytokine LIF can sustain the self-renewal of certain mouse ES cells (mES cells) through activation of the signal transduction pathway LIF/gp130/ STAT3. In this pathway the transcription factor STAT3 is a crucial factor. Furthermore, Oct-3/4 plays a very important role in maintaining the ES cell pluripotency. Oct-3/4 regu- lates embryo development through its co-factor Sox2 and Rox-1. Recently nanog, a new homeodomain gene, was found and it has been shown to be crucial for the renewal and pluripotency of ES cells. Three other signals BMP, Wnt and ERK also can influence differentiation and propagation of ES cells. This review article summarizes recent progress in this area, mainly focusing on the LIF signaling pathway and the transcription factors Oct-3/4 and Nanog. Although it is still unclear how these components cooperate, a model is presented here to provide a design for solving this problem.
Keywords:ES cells   self-renewal   signal transduction   LIF   STAT3   BMP   Oct-3/4   Nanog.  
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《科学通报(英文版)》浏览原始摘要信息
点击此处可从《科学通报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号