首页 | 本学科首页   官方微博 | 高级检索  
     

用于图像目标识别的神经网络方法
引用本文:沈定刚,戚飞虎. 用于图像目标识别的神经网络方法[J]. 系统工程与电子技术, 1994, 0(9)
作者姓名:沈定刚  戚飞虎
作者单位:上海交通大学光纤所
基金项目:国家攀登计划认知科学(神经网络)重大关键项目
摘    要:本文提出了一种全局最优的神经网络(FullDomainOptimumNeuralNetwork)模型用于目标识别。通常所设计的神经网络不能保证全局最优,使得网络不一定收敛到期望样本点上。本文的模型采用了先设计稳定点、再构造吸引域的方法,提高了网络的识别正确率及速度。针对图像识别中矢量维数大的实际,提出了一种不变性方法,使得样本维数下降而分类距离保持不变。同时又证明了网络的收敛性、收敛速度及映射保距等。计算机模拟结果表明,网络对噪声或缺损图均能正确识别。

关 键 词: ̄+神经网络,模型,目标识别,图像识别,模拟。

A FDO Neural Network Model and Its Application to Image Recognition
Shen Dinggang and Qi Feihu. A FDO Neural Network Model and Its Application to Image Recognition[J]. System Engineering and Electronics, 1994, 0(9)
Authors:Shen Dinggang and Qi Feihu
Abstract:A foll domain optimum neural network(FDONN)and its application to image rec-ognition are proposed in this paper.A neural network generally cannot converge to a global mini-mum.In this paper,a method of devising stable points firstly and basins of attraction laterly is used,by which the speed and correctness of recognition are improved.Owing to the fact that the dimen-sions of image are large,an invariant transformation method is presented to decrease the dimen-sions of image without changing the distance between them. The properties of the neural network,such as quality and speed of convergence and invariance of mapping, are proved,too. Several com-puter simulation examples are given. The recognised images include noise-added images and defec-tive images.
Keywords:Neural network  Model  Target recognition  Image recognition  Simulation.  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号