摘 要: | 近距空战中环境复杂、格斗态势高速变化,基于对策理论的方法因数据迭代量大而不能满足实时性要求,基于数据驱动的方法存在训练时间长、执行效率低的问题。对此,提出了一种基于深度强化学习算法的UCAV近距空战机动决策方法。首先,在UCAV三自由度模型的基础上构建飞行驱动模块,形成状态转移更新机制;然后在近端策略优化算法的基础上加入Ornstein-Uhlenbeck随机噪声以提高UCAV对未知状态空间的探索能力,结合长短时记忆网络(LSTM)增强对序列样本数据的学习能力,提升算法的训练效率和效果。最后通过设计3组近距空战仿真实验,并与PPO算法作性能对比,验证所提方法的有效性和优越性。
|