首页 | 本学科首页   官方微博 | 高级检索  
     

数据流挖掘技术
引用本文:姜远,刘力平. 数据流挖掘技术[J]. 江南大学学报(自然科学版), 2007, 6(6): 654-657
作者姓名:姜远  刘力平
作者单位:南京大学,软件新技术国家重点实验室,江苏,南京,210093
基金项目:国家自然科学基金项目(60505013),江苏省自然科学基金项目(BK2005412)
摘    要:简要概述了数据流挖掘技术,探讨了数据流的特点.数据流的概念漂移现象,给数据流上的数据挖掘带来很大困难.由于计算机的内存有限,数据窗口技术只针对最近的数据,而最近的数据常常导致数据挖掘系统中的分类器过配,文中介绍了解决这一问题的方法,并讨论了数据流挖掘技术的应用.

关 键 词:数据挖掘  数据流  滑动窗口  分类
文章编号:1671-7147(2007)06-0654-04
修稿时间:2007-05-05

Survey of Data Mining on Data Stream
JIANG Yuan,LIU Li-ping. Survey of Data Mining on Data Stream[J]. Journal of Southern Yangtze University:Natural Science Edition, 2007, 6(6): 654-657
Authors:JIANG Yuan  LIU Li-ping
Abstract:The paper briefly introduces the techniques of data mining on data stream.The characteristics of data stream,such as unbounded,fast-flowing,continuous,and bursty are discussed.The concept in the data stream often changes as time passes.Sometimes,concept conflicts exist in the data stream,which brings a lot of difficulties to mining on data stream.Nowadays,limited memory can not satisfy the requirements of constantly increasing data."Sliding window" technique which only considers recent data in data stream is such a kind of technique to meet the new requirements.But in such technique overfitting often occurs.Some algorithms are proposed to cope with such problems.This paper gives a brief introduction to these algorithms.Some applications of data mining on data stream are also discussed.
Keywords:data mining  data stream  sliding window  classify
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号