摘 要: | 现有概率框架下的扩展目标跟踪方法需要已知系统量测噪声统计特性,然而在实际过程中量测噪声大多为边界已知而统计特性未知的有界噪声,其难以利用概率方法对扩展目标运动状态与形态进行计算。针对有界噪声条件下的扩展目标跟踪问题,提出一种基于集员滤波的扩展目标跟踪方法,该方法通过UBB椭球集合对量测噪声进行表示,并采用集员滤波对运动状态集合参数进行计算。在对扩展目标形态估计过程中,结合凸包计算几何理论中的Graham scan算法,求解包含目标形态最大误差的最小边界矩阵,最后利用仿射变换和偏移超曲面计算椭球Minkowski差的边界参数,从而对目标形态矩阵进行更新。仿真结果表明,在有界噪声条件下,相比于传统概率框架下的贝叶斯滤波方法,文中所提出的方法对目标运动和扩展形态的跟踪精度更高。
|