首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的求解圆锥规划的非内点算法
引用本文:程欢,穆学文,宋琦悦. 一种新的求解圆锥规划的非内点算法[J]. 四川大学学报(自然科学版), 2019, 56(2): 203-208
作者姓名:程欢  穆学文  宋琦悦
作者单位:西安电子科技大学数学与统计学院,西安电子科技大学数学与统计学院,西安电子科技大学数学与统计学院
基金项目:陕西省自然科学基金(2015JM1031);中央高校基本科研业务费(JB150713)
摘    要:针对一般的圆锥优化问题,本文提出了一种新的非内点算法.该算法根据圆锥与二阶锥的关系通过引入一个与圆锥规划互补条件等价的投影方程将问题转化为线性方程组求解,且在每步迭代中只需求解一个系数矩阵固定的线性方程组并执行两次投影运算.该算法还具有可以从任意初始点开始且不要求仿射约束系数矩阵的行向量组线性独立等特点.本文还在较弱的假设条件下证明了算法的全局收敛性.数值实验结果表明该算法快速有效.

关 键 词:圆锥规划;非内点算法;投影方程;全牛顿步
收稿时间:2018-03-29
修稿时间:2018-06-25

A new non-interior point algorithm for circular cone programming
Cheng Huan,Mu Xue-Wen and Song Qi-Yue. A new non-interior point algorithm for circular cone programming[J]. Journal of Sichuan University (Natural Science Edition), 2019, 56(2): 203-208
Authors:Cheng Huan  Mu Xue-Wen  Song Qi-Yue
Affiliation:College of Mathematics and Statistics, Xidian University,College of Mathematics and Statistics, Xidian University,College of Mathematics and Statistics, Xidian University
Abstract:A new non-interior point algorithm is proposed for solving the circular cone programming (CCP). Based on the relationship between the circular cone and the second-order cone, a projection equation that is equivalent to the complementary condition of the CCP is introduced.Then the problem is transformed into a linear system of equations. The method only needs to solve the linear equations with the same coefficient matrix and compute two projections at each iteration. Moreover, the algorithm can start from an arbitrary point and does not require the row vectors of the affine constraint coefficient matrix to be linearly independent. Under weaker assumptions, the global convergence of the algorithm is proved. Numerical results show that the algorithm is fast and effective.
Keywords:Circular cone programming   Projection equation   Full-Newton step   Non-interior point algorithm   Convergence
本文献已被 CNKI 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号