首页 | 本学科首页   官方微博 | 高级检索  
     

量子乘法器的设计及其实现方法
引用本文:袁素真,王艳,王玉婵,黄斐. 量子乘法器的设计及其实现方法[J]. 重庆邮电大学学报(自然科学版), 2019, 31(3): 395-399
作者姓名:袁素真  王艳  王玉婵  黄斐
作者单位:重庆邮电大学 光电工程学院,重庆,400065;重庆邮电大学 光电工程学院,重庆,400065;重庆邮电大学 光电工程学院,重庆,400065;重庆邮电大学 光电工程学院,重庆,400065
基金项目:国家自然科学基金(61801061F050702);重庆市自然科学基金(CSTC2016jcyjA0028);重庆市教委科技项目(KJQN201800607,KJ1704090)
摘    要:
乘法器在数字信号处理和数字通信领域应用广泛,如何实现快速高效的乘法器关系着整个系统的运算速度。提出了一种新颖的量子乘法器设计方法,利用量子门设计一位量子全加器,并将n个一位量子全加器叠加在一起设计n位量子全加器,实现2个n位二进制数的加和;再利用2个控制非门设计置零电路,并使用置零电路设计量子右移算子;对二进制数乘法步骤进行改进,利用量子全加器和量子右移算子设计量子乘法器,同时设计实现此乘法器的量子线路。时间复杂度分析结果表明,本方法与目前最高效的量子乘法器具有相同的时间复杂度,并具有更简洁的实现方法。

关 键 词:量子算法  量子乘法器  量子全加器  量子右移算子
收稿时间:2018-03-23
修稿时间:2019-04-06

Quantum multiplier and its implementation method
YUAN Suzhen,WANG Yan,WANG Yuchan and HUANG Fei. Quantum multiplier and its implementation method[J]. Journal of Chongqing University of Posts and Telecommunications, 2019, 31(3): 395-399
Authors:YUAN Suzhen  WANG Yan  WANG Yuchan  HUANG Fei
Affiliation:School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China,School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China,School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China and School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China
Abstract:
Multiplier is widely used in digital signal processing and digital communications. How to achieve fast and efficient multiplier affects the speed of the entire system. This paper proposes a novel method for quantum multiplier. Firstly, a 1 bit quantum full adder is designed using the quantum gates, and an n bit quantum full adder is completed by superimpose the 1 bit quantum full adder n times, which can achieve the addition of two n bit binary Numbers. Secondly, using two CNOT gates to design a zero setting circuit, and a quantum right shift operator can be implemented by using the zero setting circuit. Finally, the multiplication steps of binary numbers are improved, quantum full adder and quantum right shift operators are used to design quantum multiplier, and a quantum circuit for implementing this multiplier is designed at the same time. The time complexity analysis results show that this method has the same time complexity as the most efficient quantum multipliers and has a simpler implementation.
Keywords:quantum algorithms   quantum multiplier   quantum integrator   quantum right shift operator
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号