首页 | 本学科首页   官方微博 | 高级检索  
     

多源头网络用户访问信息自适应识别算法
作者姓名:詹华蕊  杨花雨
作者单位:商丘工学院 信息与电子工程学院,商丘工学院 信息与电子工程学院
摘    要:为了解决传统算法学习规则有效性低、无法保证学习性能、匹配模板不全面、容易出现误识别现象的问题,提出一种改进的反向传播(back propagation,BP)神经网络算法研究多源头网络用户访问信息自适应识别问题。对多源头网络用户访问信息进行数据清洗处理,用多源头网络用户访问矩阵对全部会话集合进行描述;在矩阵中引入网络用户位置信息,将得到的信息保存至数据库,构成信息集。将一段时间内用户访问日志构成用户访问路径数据,依据访问请求抵达顺序,将其保存至相应用户缓冲区。把多源头网络用户访问路径当成隐马尔科夫模型的状态转移序列,将网页中信息集当成状态输出符号集,通过离散隐马尔科夫模型对不同源头网络用户访问信息进行分析,提取其特征。将多源头网络用户访问不同种类信息的概率特征作为输入,建立改进BP神经网络算法,得到的输出结果即为多源头网络用户访问信息自适应识别结果。结果表明:采用的BP神经网络算法学习性能优;所提算法识别准确性高。可见所提算法识别结果可靠。

关 键 词:多源头网络 用户 访问信息 自适应 识别
收稿时间:2018-11-15
修稿时间:2018-11-15
本文献已被 CNKI 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号