首页 | 本学科首页   官方微博 | 高级检索  
     

任意环的乘法模
引用本文:张国印. 任意环的乘法模[J]. 南京大学学报(自然科学版), 2006, 23(1): 59-69
作者姓名:张国印
作者单位:金陵科技学院基础部 南京
基金项目:Supported by the National Natural Science Foundation of China (10271052) is partially supported by the Specialized Research Fund for the Doctoral Program of China Education Ministry (Grant No. 20030284033).
摘    要:
设R是任意带单位元的结合环.如所周知,任意右乘法模是拓扑模.本文证明:右强duo环上的任一有限生成的右R模-M是拓扑模当且仅当它是乘法模.此外,几个已知的交换环上关于乘法模的结果被推广到非交换环上.

关 键 词:乘法模  素子模  CP模
修稿时间:2004-12-17

MULTIPLICATION MODULES OVER ANY RINGS
Zhang Guoyin. MULTIPLICATION MODULES OVER ANY RINGS[J]. Journal of Nanjing University: Nat Sci Ed, 2006, 23(1): 59-69
Authors:Zhang Guoyin
Abstract:
Let R be any ring with identity. It is well known that any right multiplication module is top. It is proved in this paper that a finitely generated right module M over a right strongly duo ring R is a top module if and only if it is a multiplication module. In addition, several known results on the multiplication modules over a commutative ring are extended over a non-commutative ring.
Keywords:multiplication module   prime submodule   CP module
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号