首页 | 本学科首页   官方微博 | 高级检索  
     

概率天气预报的K近邻非参数估计仿真模型
引用本文:翟宇梅,赵瑞星. 概率天气预报的K近邻非参数估计仿真模型[J]. 系统仿真学报, 2005, 17(4): 786-788
作者姓名:翟宇梅  赵瑞星
作者单位:北京应用气象研究所,北京,100029
摘    要:
基于模式识别和相似预报思想,提出了一种制作概率天气预报的K近邻非参数估计仿真模型(简称KNN-M)。该模型包括历史样本数据库、近邻子集搜索程序、近邻子集优化算法和预报量估计技术。利用该模型进行了降水和云量的概率预报试验,独立样本检验结果表明,该模型预报稳定性好,预报准确率较高,具有较好的业务应用前景。

关 键 词:K近邻 非参数估计 仿真模型 概率天气预报
文章编号:1004-731X(2005)04-0786-03
修稿时间:2003-10-15

K-Nearest Neighbor Nonparametric Estimation Bootstrap Model for Weather Probability Forecasting
ZHAI Yu-Mei,ZHAO Rui-xing. K-Nearest Neighbor Nonparametric Estimation Bootstrap Model for Weather Probability Forecasting[J]. Journal of System Simulation, 2005, 17(4): 786-788
Authors:ZHAI Yu-Mei  ZHAO Rui-xing
Abstract:
Based on the model identification and analogue forecasting, a new approach for probability weather forecasting is proposed, which is called K-nearest neighbor nonparametric estimation bootstrap model (named KNN-M for short). This model includes a historical database, a procedure of searching for the nearest neighbor subset and its optimization algorithm and the technique of predict and estimation. The case experiments are made on the forecasting of precipitation and cloud amount by using KNN-M. The individual sample test results show that the forecast estimation is stable and the accuracy is high. KNN-M has good prospects in operational weather forecast.
Keywords:K-nearest neighbor  nonparametric estimation  bootstrap model  probability weather forecasting
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号