首页 | 本学科首页   官方微博 | 高级检索  
     

一种多样性引导的两阶段多目标微粒群算法
引用本文:郑向伟,刘弘. 一种多样性引导的两阶段多目标微粒群算法[J]. 山东大学学报(理学版), 2008, 43(11): 5-10
作者姓名:郑向伟  刘弘
作者单位:山东师范大学信息科学与工程学院,山东,济南,250014;山东师范大学信息科学与工程学院,山东,济南,250014
基金项目:国家自然科学基金资助项目
摘    要:
针对现有多目标微粒群算法存在容易陷于局部极值、收敛速度慢、函数评价次数多等不足,提出了一种多样性引导的2阶段多目标微粒群算法,依据种群多样性动态使用不同的变异方式,采用了2种不同的领导微粒选择方式,基于Pareto占优排序和拥挤距离来控制外部档案中解的数目。针对多个多目标测试函数进行了实验,并与其他文献的方法进行了比较,验证了算法的有效性。

关 键 词:多目标优化  微粒群算法  多样性  领导微粒

A diversity-guided two stages multi-objective particle swarm optimizer
ZHENG Xiang-Wei,LIU Hong. A diversity-guided two stages multi-objective particle swarm optimizer[J]. Journal of Shandong University, 2008, 43(11): 5-10
Authors:ZHENG Xiang-Wei  LIU Hong
Affiliation:School of Information Science and Engineering, Shandong Normal University, Jinan 250014, Shandong, China
Abstract:
Multi-objective particle swarm optimizers are often trapped in local optima,converge slowly and cost more function evaluations.Therefore,a diversity-guided two-stage MOPSO(DTSPSO) was proposed.DTSPSO dynamically selects different mu-tation operators according to current population diversity and divides into two stages according to its ways of selecting leaders.In addition,Pareto dominance ranking and crowding distance were used to fix the size of the external archive.Experiments were car-ried out on several classical benchmark functions for multi-objective optimization problems and the results show that DTSPSO is ef-fective in solving various multi-objective optimization problems.
Keywords:multi-objective optimization  particle swarm optimizer  diversity  leader particle
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号