Abstract: | First, two fault tolerant planning algorithms with avoidance of joint static torque limit or joint dynamic torque limit are proposed respectively. The former is suitable for the low-speed manipulators, and the latter is suitable for the high-speed manipulators. These algorithms not only can insure manipulation tasks to lie within the fault tolerant workspace but also can avoid joint torque limit, and hence can insure a redundant manipulator to be fault tolerant in both kinematical sense and dynamic sense. Then, the simulation examples for a planar 3R manipulator demonstrate the validity of these algorithms. |