首页 | 本学科首页   官方微博 | 高级检索  
     

单峰映射允许搓揉序列的Hausdorff维数和测度
引用本文:张爱华,廖公夫. 单峰映射允许搓揉序列的Hausdorff维数和测度[J]. 吉林大学学报(理学版), 2005, 43(1): 45-46
作者姓名:张爱华  廖公夫
作者单位:吉林大学数学研究所,长春,130012;吉林大学数学研究所,长春,130012
基金项目:国家自然科学基金(批准号:19971035),吉林大学创新基金.
摘    要:利用Hausdorff维数和Hausdorff测度, 对单峰映射的允许搓揉序列的集合给出定量刻画, 证明了该集合在两个符号的单边符号空间中Hausdorff维数是1, 1维Hausdorff测度是0.这与传统的定性分析相比, 结果更有意义.

关 键 词:单峰映射  搓揉序列  Hausdorff维数  Hausdorff测度
文章编号:1671-5489(2005)01-0045-02
收稿时间:2004-10-20
修稿时间:2004-10-20

Hausdorff Dimension and Measure of Admissible Kneading Sequences to Unimodal Mapping
ZHANG Ai-hua,LIAO Gong-fu. Hausdorff Dimension and Measure of Admissible Kneading Sequences to Unimodal Mapping[J]. Journal of Jilin University: Sci Ed, 2005, 43(1): 45-46
Authors:ZHANG Ai-hua  LIAO Gong-fu
Affiliation:Institute of Mathematics, Jilin University, Changchun 130012, China
Abstract:Using the tools of Hausdorff dimension and Hausdorff measure, we give quantitative version for the set of admissible kneading sequences to unimodal mappings. It is proved for the set that the Hausdorff dimension is 1 and the 1-dimension Hausdorff measure is zero in one-sided symbolic space with two symbols, which are more profound than those obtained by traditional qualitative analysis.
Keywords:unimodal mapping  kneading sequence  Hausdorff dimension  Hausdorff measure
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号