摘 要: | 在半监督聚类算法中,通常利用有标签样本的指导来提高数据的聚类效果,但不同样本对聚类结果的重要性并未充分考虑。为了解决这一问题,该文提出了一种基于自步学习的自适应半监督聚类算法(ASSCSPL)。首先,在模型中引入自适应损失函数,可以通过调节自适应损失参数提高模型的鲁棒性;其次,在模型中引入自步学习机制,用来刻画不同样本对聚类结果的不同重要程度;最后,在标签传播阶段,所得算法能够很好地利用已有的监督信息,为无标签数据赋予相应的标签权重。数据实验表明,与现有优秀算法比较,所提算法可以达到更好的聚类效果。此外,实验结果也表明,所提算法能够有效地降低噪声对模型聚类性能的影响。
|