权值直接确定的三角型模糊前向神经网络 |
| |
作者姓名: | 杨文光 |
| |
作者单位: | 华北科技学院基础部,北京,101601 |
| |
基金项目: | 中央高校基本科研业务费资助项目,华北科技学院高等教育科学研究资助课题 |
| |
摘 要: | 为了确定前向神经网络的网络结构,提出了一种基于采样数据的含单隐层神经元的模糊前向神经网络,反映了构造数据所蕴含的系统信息,其隐层神经元激励函数选择为三角型隶属函数和构造数据相应输出的乘积。该网络模型可以随采样数据的多少自主选择构造数据,自主设定隐层神经元,利用权值直接确定法得到网络最优权值。数值仿真实验表明,相比于现有文献的已有网络模型,模糊前向神经网络具有逼近精度高、网络结构可调、较好的预测性和实时性高的优点。
|
关 键 词: | 模糊前向神经网络 权值直接确定法 三角型隶属函数 实时 |
收稿时间: | 2012-05-20; |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《中山大学学报(自然科学版)》浏览原始摘要信息 |
|
点击此处可从《中山大学学报(自然科学版)》下载全文 |
|