首页 | 本学科首页   官方微博 | 高级检索  
     

基于CNN-CRF的中文电子病历命名实体识别研究
作者姓名:曹依依  周应华  申发海  李智星
作者单位:重庆邮电大学 计算机科学与技术学院,重庆400065;计算智能重庆市重点实验室,重庆400065
基金项目:国家自然科学基金(61502066)
摘    要:智慧医疗技术的发展让我们不满足仅使用传统方法做医学研究。针对中文电子病历实体识别问题,设计了一种基于卷积神经网络结合条件随机场(convolutional neural network-conditional random field,CNN-CRF)的实体识别算法框架。为得到高质量的词向量,将标注实体加入词典进行分词,并将已标注和未标注文本作为语料,用word2vec工具对已分词文本进行无监督学习;为避免扩张卷积层数增加导致过拟合,采用迭代扩张卷积处理输入向量,并使用dropout随机丢弃一些连接;运用条件随机场对网络的分类结果进行修正。把该方法在中文电子病历上进行对比试验,从病历中提取出身体部位,疾病,症状,检查及治疗5类实体。实验结果表明,该方法能有效地辨别病历中的实体,其识别的准确率、召回率和f1值分别为90.01%,90.62%,90.31%,准确率和速率比传统方法都有一定提高。

关 键 词:实体识别  中文电子病历  卷积神经网路  条件随机场
收稿时间:2018-06-28
修稿时间:2019-09-09
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号