首页 | 本学科首页   官方微博 | 高级检索  
     

关于一种免疫遗传算法的性能分析
引用本文:罗文坚,曹先彬,王煦法. 关于一种免疫遗传算法的性能分析[J]. 系统仿真学报, 2006, 18(4): 873-876
作者姓名:罗文坚  曹先彬  王煦法
作者单位:中国科学技术大学计算机科学技术系,合肥,230027
基金项目:中国科学院资助项目;中国博士后科学基金;安徽省教育厅科研项目
摘    要:对一种免疫遗传算法的求解性能进行理论分析。首先分析了算法的良好收敛性能;然后,进一步提出了临界浓度的概念,说明该算法与遗传算法的本质不同在与只有低于临界浓度的较优模式才能达到指数级增长,并在此基础上对算法的个体多样性维持能力进行了分析说明。本工作有利于从理论上进一步揭示这类改进遗传算法求解性能得以提高的根本原因。

关 键 词:免疫遗传算法  全局收敛性  模式  个体多样性
文章编号:1004-731X(2006)04-0873-04
收稿时间:2005-02-25
修稿时间:2005-11-07

On Performance Analyses of Immune Genetic Algorithm
LUO Wen-jian,CAO Xian-bin,WANG Xu-fa. On Performance Analyses of Immune Genetic Algorithm[J]. Journal of System Simulation, 2006, 18(4): 873-876
Authors:LUO Wen-jian  CAO Xian-bin  WANG Xu-fa
Affiliation:Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
Abstract:The performance analysis of the Immune Genetic algorithm was focued on..Firstly,the global convergence of the Immune Genetic algorithm was analyzed.Secondary,after a concept of Critical Density was proposed,the essential difference between Immune Genetic Algorithm and Genetic Algorithm was given that only the better schemas which have lower density than the corresponding Critical Density could exponentially increase.Finally,the ability of maintaining the diversity of individuals was analyzed.This work is useful to theoretically explore and explain why such kind of improved Genetic Algorithm can get better performance.
Keywords:immune genetic algorithm  global convergence  schema  diversity
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号