首页 | 本学科首页   官方微博 | 高级检索  
     

基于局部重构与全局保持的半监督判别分析方法
引用本文:韦佳,杨创新,马千里,余国先. 基于局部重构与全局保持的半监督判别分析方法[J]. 华南理工大学学报(自然科学版), 2010, 38(7). DOI: 10.3969/j.issn.1000-565X.2010.07.008
作者姓名:韦佳  杨创新  马千里  余国先
作者单位:华南理工大学,计算机科学与工程学院,广东,广州,510006;广东商学院,信息学院,广东,广州,510320
基金项目:广东省自然科学基金资助项目,华南理工大学中央高校基本科研业务费专项资金资助项目 
摘    要:为克服线性判别分析(LDA)只能利用有标记样本的缺点,提出一种基于局部重构与全局保持的半监督判别分析(LRGPSSDA)方法.LRGPSSDA通过最小化局部重构误差来确定邻域图的边权值,在保持数据集局部结构的同时保持其全局结构,具有对邻域参数的选择不敏感、所得投影子空间的维数不受样本类别数的限制等特点.相较现有的半监督判别分析方法(如SDA和UDA),LRGPSSDA的分类性能更好.在YaleB和CMUPIE标准人脸库上的实验结果验证了该算法的有效性.

关 键 词:局部重构  全局保持  判别分析  半监督学习
收稿时间:2009-10-09
修稿时间:2009-12-17

Semi-Supervised Discriminant Analysis Method Based on Local Reconstruction and Global Preserving
Wei Jia,Yang Chuang-xin,Ma Qian-li,Yu Guo-xian. Semi-Supervised Discriminant Analysis Method Based on Local Reconstruction and Global Preserving[J]. Journal of South China University of Technology(Natural Science Edition), 2010, 38(7). DOI: 10.3969/j.issn.1000-565X.2010.07.008
Authors:Wei Jia  Yang Chuang-xin  Ma Qian-li  Yu Guo-xian
Abstract:Considering the shortcoming of Linear Discriminant Analysis (LDA) that it can only make use of labeled samples but can’t make use of large amount of unlabeled samples, a new method of Local Reconstruction and Global Preserving Based Semi-Supervised Discriminant Analysis (LRGPSSDA) is proposed in this paper. Compared with existing semi-supervised discriminative analysis methods, LRGPSSDA can preserve the global geometric structure of the sampled data set when preserving its local geometric structure and can set the edge weights of neighborhood graph through minimizing the local reconstruction error, besides it isn’t sensitive to the selection of neighborhood parameter and the dimensionality of its low dimensional projecting subspace doesn’t suffer from the restriction of the number of classes. The experimental results on YaleB and CMU PIE face database demonstrate the effectiveness of the proposed method.
Keywords:local reconstruction  global preserving  discriminant analysis  semi-supervised learning
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《华南理工大学学报(自然科学版)》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号