首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的主成分分析特征抽取算法:YJ-MICPCA
引用本文:谢昆明,罗幼喜. 一种改进的主成分分析特征抽取算法:YJ-MICPCA[J]. 武汉科技大学学报, 2019, 0(3): 220-226
作者姓名:谢昆明  罗幼喜
作者单位:湖北工业大学理学院
基金项目:国家社会科学基金资助项目(17BJY210).
摘    要:针对主成分分析(PCA)假设数据服从高斯分布的条件以及只能处理特征之间线性关系的不足,提出一种基于Yeo-Johnson变换和最大信息系数(MIC)的PCA特征抽取算法,命名为YJ-MICPCA。通过YeoJohnson变换改善原始数据分布,使其近似服从高斯分布,并将PCA中计算协方差矩阵转化为计算MIC矩阵的平方,使其也能处理特征间存在的非线性关系。以UCI机器学习数据库中的11个数据集为实验对象,采用支持向量机、朴素贝叶斯模型、k近邻算法这3种分类器,比较了YJ-MICPCA与PCA及其他常用非线性降维方法LLE、Isomap、MSD、KPCA的降维效果和分类精度,结果表明YJ-MICPCA总体上优于其他几种算法。

关 键 词:主成分分析  最大信息系数  Yeo-Johnson变换  特征抽取  降维  分类
收稿时间:2019-01-19

An improved PCA algorithm for feature extraction:YJ-MICPCA
Xie Kunming and Luo Youxi. An improved PCA algorithm for feature extraction:YJ-MICPCA[J]. Journal of Wuhan University of Science and Technology, 2019, 0(3): 220-226
Authors:Xie Kunming and Luo Youxi
Affiliation:School of Science, Hubei University of Technology, Wuhan 430068, China and School of Science, Hubei University of Technology, Wuhan 430068, China
Abstract:Principal component analysis (PCA) method assumes that the data obey Gaussian distribution, and it can only deal with the linear relationship between features. To address the problem, an improved PCA algorithm for feature extraction (named as YJ-MICPCA) was presented based on Yeo-Johnson transformation and maximal information coefficient (MIC). The original data distribution was changed into approximate Gaussian distribution by Yeo-Johnson transformation. Then, instead of covariance matrix in PCA, the square of MIC matrix was calculated so that YJ-MICPCA can also handle the non-linear relationship between features. Experiments on eleven datasets from UCI Machine Learning Repository were conducted, and three classifiers, i.e. support vector machine (SVM), naive Bayes model (NB) and k-nearest neighbor algorithm (k-NN), were used to compare the effect of dimensionality reduction and classification accuracy of YJ-MICPCA with PCA and such common non-linear dimensionality reduction methods as LLE, Isomap, MSD and KPCA. The results show that YJ-MICPCA is superior to other algorithms as a whole.
Keywords:PCA   maximal information coefficient   Yeo-Johnson transformation   feature extraction   dimensionality reduction   classification
本文献已被 CNKI 等数据库收录!
点击此处可从《武汉科技大学学报》浏览原始摘要信息
点击此处可从《武汉科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号