摘 要: | 针对视网膜血管分布复杂且多变,提出一种基于上下文特征提取的视网膜血管分割算法。首先通过霍特林变换(Karhunen-Loeve, K-L)生成灰度图并经过预处理增强对比度。然后经过局部信息熵进行采样。该网络编码部分的多感受野残差编码模块在兼顾速度的同时对特征进行充分的提取。同时底部的特征融合模块由非对称融合非局部模块和非对称金字塔非局部模块两部分组成,用于融合图片的上下文特征。而解码部分由多个微型U型网络组成,保证将底层特征和高层映射特征有效融合并进行深层次的再提取。本文算法在血管分割的数字视网膜图像数据集(digital retinal image for vessel extraction, DRIVE)数据集进行仿真,准确率为96.45%,特异性为98.37%,敏感度为82.7%,实验结果表明能有效地分割视网膜血管。
|