首页 | 本学科首页   官方微博 | 高级检索  
     

改进YOLOv3的行人车辆目标检测算法
引用本文:袁小平,马绪起,刘赛. 改进YOLOv3的行人车辆目标检测算法[J]. 科学技术与工程, 2021, 21(8): 3192-3198. DOI: 10.3969/j.issn.1671-1815.2021.08.031
作者姓名:袁小平  马绪起  刘赛
作者单位:中国矿业大学信息与控制工程学院,徐州221116
基金项目:科技部科技支撑项目( 2013BAK06B08)
摘    要:针对YOLOv3(you only look once version 3)对中小目标检测效果不理想的问题,提出改进算法DX-YOLO(densely ResneXt with YOLOv3).首先对YOLOv3的特征提取网络Darknet-53进行改进,使用ResneXt残差模块替换原有残差模块,优化了卷积网络结构;...

关 键 词:深度学习  目标检测  YOLOv3  ResneXt  DenseNet
收稿时间:2020-07-03
修稿时间:2020-12-18

An Improved Algorithm of Pedestrian and Vehicle Detection Based on YOLOv3
Yuan Xiaoping,Ma Xuqi,Liu Sai. An Improved Algorithm of Pedestrian and Vehicle Detection Based on YOLOv3[J]. Science Technology and Engineering, 2021, 21(8): 3192-3198. DOI: 10.3969/j.issn.1671-1815.2021.08.031
Authors:Yuan Xiaoping  Ma Xuqi  Liu Sai
Affiliation:China University of Mining and Technology
Abstract:Considering that YOLOv3 is not ideal for small and medium targets detection, an improved algorithm DX-YOLO is proposed. Firstly, the feature extraction network of YOLOv3 called Darknet-53 is improved, and the original residual module is replaced by ResneXt residual module, which optimizes the structure of convolution network. Inspired by Densenet, dense connection is introduced into Darknet-53 to realize feature reuse and improve the efficiency of feature extraction. According to the characteristics of data set, K-means algorithm is used to cluster the dimensions of data set to get the appropriate anchor box. Experiments on Udacity data set show that compared with YOLOv3, DX-YOLO algorithm improves the mAP by 3.42%; especially, the AP on medium and small targets increases by 2.74% and 5.98% respectively.
Keywords:deep learning   object detection   YOLOv3   ResneXt   Densenet
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号