摘 要: | 为模拟驾驶人记忆效应以及模糊感知特性,设计了基于模糊感知时间窗的深度学习跟驰模型。提取highD数据集跟驰轨迹,以0.2 s最小时间间隔,连续3 s本车速度、前后车速度差、车头间距的时序数据作为模型输入,模拟驾驶记忆。训练深度学习跟驰模型,得出单层32个输出维度的门控循环单元(GRU)网络可以很好拟合实际数据。 在每次输入模型的时序数据中,用模型预测值替换部分真实跟驰状态值,作为驾驶员对场景的估计,即模糊感知。实验得出对同一场景的不同模糊感知,可产生不同跟驰行为,模拟了驾驶行为的异质性,可为异质交通行为仿真提供方法。
|