首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease
Authors:Wilson Scott M  Bhattacharyya Bula  Rachel Rivka A  Coppola Vincenzo  Tessarollo Lino  Householder Deborah B  Fletcher Colin F  Miller Richard J  Copeland Neal G  Jenkins Nancy A
Institution:Mouse Cancer Genetics Program, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA.
Abstract:Mice that are homozygous with respect to a mutation (ax(J)) in the ataxia (ax) gene develop severe tremors by 2-3 weeks of age followed by hindlimb paralysis and death by 6-10 weeks of age. Here we show that ax encodes ubiquitin-specific protease 14 (Usp14). Ubiquitin proteases are a large family of cysteine proteases that specifically cleave ubiquitin conjugates. Although Usp14 can cleave a ubiquitin-tagged protein in vitro, it is unable to process polyubiquitin, which is believed to be associated with the protein aggregates seen in Parkinson disease, spinocerebellar ataxia type 1 (SCA1; ref. 4) and gracile axonal dystrophy (GAD). The physiological substrate of Usp14 may therefore contain a mono-ubiquitin side chain, the removal of which would regulate processes such as protein localization and protein activity. Expression of Usp14 is significantly altered in ax(J)/ax(J) mice as a result of the insertion of an intracisternal-A particle (IAP) into intron 5 of Usp14. In contrast to other neurodegenerative disorders such as Parkinson disease and SCA1 in humans and GAD in mice, neither ubiquitin-positive protein aggregates nor neuronal cell loss is detectable in the central nervous system (CNS) of ax(J) mice. Instead, ax(J) mice have defects in synaptic transmission in both the central and peripheral nervous systems. These results suggest that ubiquitin proteases are important in regulating synaptic activity in mammals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号