首页 | 本学科首页   官方微博 | 高级检索  
     

基于公共子序列的OPSM双聚类算法
引用本文:薛云*, 傅俊橦, 李杰进, 王杜齐, 邝秋华, 张美珍, 肖化. 基于公共子序列的OPSM双聚类算法[J]. 华南师范大学学报(自然科学版), 2015, 47(4): 165-171. DOI: 10.6054/j.jscnun.2014.12.040
作者姓名:薛云  傅俊橦  李杰进  王杜齐  邝秋华  张美珍  肖化
作者单位:1.(华南师范大学物理与电信工程学院,广州 510006)
基金项目:国家自然科学基金项目(71102146);广东省自然科学基金项目(S2012010010661)
摘    要:OPSM作为一种基于模式的双聚类方法,被广泛应用于基因数据矩阵的分析上.在一个OPSM聚类中,形成聚类的若干基因在特定的条件子集下具有一致的表达模式,其中隐含着基因的关联调控信息,对基因数据矩阵进行双聚类分析具有生物学意义.其中,Deep OPSM 是OPSM 聚类中行数少列数多的特殊聚类.根据OPSM模型,该文提出了一种快速有效的精确性算法,用于挖掘分散在基因数据矩阵中的OPSM聚类.首先寻找基因数据矩阵中任意两行的公共子序列,然后利用STL map对找到的公共子序列进行支持度统计,并将符合支持度阈值的OPSM聚类输出,且通过阈值的设置即可输出Deep OPSMs.结果证明该算法能够快速地找到符合条件的Deep OPSMs.通过P-value值分析,验证了找到的Deep OPSM具有明显的生物学意义.

关 键 词:OPSM  公共子序列  Deep OPSM  双聚类  STL map
收稿时间:2014-10-11

A New OPSM Algorithm Based on All Common Subsequences
Xue Yun*, Fu Juntong, Li Jiejin, Wang Duqi, Kuang Qiuhua, Zhang Meizhen, Xiao Hua. A New OPSM Algorithm Based on All Common Subsequences[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(4): 165-171. DOI: 10.6054/j.jscnun.2014.12.040
Authors:Xue Yun*  Fu Juntong  Li Jiejin  Wang Duqi  Kuang Qiuhua  Zhang Meizhen  Xiao Hua
Affiliation:1.(School of Physics and Telecommunication Engineering,South China Normal University,Guangzhou 510006,China)
Abstract:As a pattern-based biclustering model, OPSMs (Order preserving submatrices) are widely used in the analysis of gene expression data matrix. An OPSM cluster is of great biological significance since its genes exhibit coherent expression patterns in certain conditions, which implies the genes share associated control information. Deep OPSM is a special case of OPSM clusters which have fewer rows and comparatively more columns. A fast and exact algorithm is put forward to mine OPSM clusters dispersed in the gene data matrix in this paper. Firstly, search the common subsequences of arbitrary two rows in the gene matrix; then count the support of the common subsequences by the STL map; finally output the OPSM clusters meeting the support threshold, which includes Deep OPSMs by setting different threshold. Experiments show that the algorithm can rapidly find the qualified Deep OPSMs, which is of biological significance through the p-value analysis.
Keywords:OPSM  Common Subsequences  Deep OPSM  Biclustering  STL map
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《华南师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华南师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号